Abstract

Glycine nano-crystals were grown inside alumina nano-pores due to a precipitation process from over-saturated aqueous liquid solutions. The α-glycine polymorph crystals were formed at a higher over-saturation concentration than that of the β-glycine polymorph crystals. The results indicate that the type of the glycine polymorph formed inside the alumina pores is kinetically controlled. A model is suggested to explain the competition between formations of the two polymorphs inside nano-pores. The β-glycine polymorph crystals are distinguished from the α-glycine polymorph crystals not only by XRD measurements but mainly by piezoelectric measurements, where only the non-centro-symmetric β-glycine polymorph crystals show a piezoelectric current response to applied mechanical pressures as low as 1 Pa in the environmental pressure of 1 atm (10–3% pressure change).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.