Abstract

Hepatitis C virus (HCV) is a pathogen causing chronic hepatitis, cirrhosis, and liver cancer occurring in about 3% of the world's population. Most individuals infected with HCV develop persistent viremia. Oxidative stress may play an important role in the pathogenesis of a number of diseases including HCV infection and diabetes mellitus. Polymorphisms in the antioxidant genes may determine cellular oxidative stress levels as a primary pathogenic role in HCV and/or in its complications. Patients with HCV and normal, healthy controls were investigated for a superoxide dismutase (SOD-2) polymorphism in the mitochondrial targeting sequence with Ala/Val (C-9T) substitution. Polymorphisms in antioxidant gene SOD-2 were carried out by PCR, restriction fragment length polymorphism assays and by polyacrylamide gel electrophoresis. For the SOD-2 polymorphism, the RNA positive group showed a higher percentage of "CT" genotype than the RNA negative group (89.3% vs. 66.1%, P = 0.001, χ(2) = 11.9). The RNA negative group had more TT genotypes than the RNA positive group (27.4% vs. 6.80%, P = 0.01, χ(2) = 11.6). The exposed uninfected group had an increased frequency of the "CT" genotype (86.2% vs. 66.1%, P = 0.02, χ(2) = 5.5). The RNA positives had a higher frequency of the "CT" from the normal controls (72.1% vs. 89.2%, P = 0.005, χ(2) = 7.8).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.