Abstract
Polymorphism in thin evaporated films of zirconium and hafnium oxides was investigated from 100° to 1500°C by electron diffraction and transmission electron microscopy. The films have metastable cubic structures at room temperature and at moderate temperatures. Zirconium oxide, depending on temperature, exists in cubic, tetragonal, and monoclinic forms, whereas hafnium oxide transforms directly from the cubic to the monoclinic structure. The transformation temperatures depend on the oxygen partial pressure. Air annealing of thin films of ZrO2 and HfO2 lowered the temperature of transformation of the tetragonal and the cubic structure into the monoclinic structure by about 150° and 100°C, respectively. The cubic/tetragonal transformation of ZrO2 is monotropic, whereas the tetragonal monoclinic transformation occurs by the typical nucleation and growth mechanism. Determination of grain size in ZrO2 at the tetragonal/monoclinic transformation temperature showed that the transformation occurs when a constant grain size of about 800 Å is reached. The oxygen partial pressure, grain size, and temperatures at which the metastable phases exist were correlated. The rate of grain growth is enhanced by increase in oxygen partial pressure. The accelerated transformation in air is attributed to rapid attainment of the critical size; grain boundary energy is an important controlling factor in transformation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have