Abstract

In contrast to many donor–acceptor type organic luminophores exhibiting thermally activated delayed fluorescence (TADF), two deep blue TADF emitters designed in this work contain only typical electron accepting moieties with different electron accepting abilities. Derivatives of benzophenone and diphenylsulfone substituted with phenothiazine-5,5-dioxide donor moieties were synthesized and studied. In addition to the TADF, green to blue emission color switching and strong fluorescence intensity enhancement by more than 60 times was detected for THF solution of the derivative of phenothiazine-5,5-dioxide and benzophenone under increase of UV excitation dose. We proved by a variety of experimental and theoretical studies that the unusual photophysical properties of the derivative of benzophenone are mainly related to the formation of different conformers. The photostimulated intensity enhancement of the compound is due to the rise of the quantity of triplet states and their further crossing to singlet states. To our knowledge, this is the first observation of a combination of photoinduced color switching and triplet-dependent emission intensity enhancement. These properties are shown to be useful for UV sensing with very low detection limits (less than 10 μW/cm2 for the toluene solution). Under gradual increase of UV excitation dose, the DMF solution demonstrated a green → blue color swishing from (0.34; 0.44) to (0.17; 0.18) of CIE coordinates that can be detected by naked eye.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.