Abstract

Stable macroradicals of methyl methacrylate were prepared by the azobisisobutyronitrile-initiated polymerization of methyl methacrylate in hexane whose solubility parameter value (δ) differed from that of the macroradical by more than 1.8 hildebrand units and in 1-propanol at temperatures below its theta temperature (84.5°C). The rates of heterogeneous polymerization in hexane and 1-propanol were much faster than that of the homogeneous polymerization in benzene. Stable macroradicals were not obtained in benzene which was a good solvent nor at temperatures above the glass transition temperature ( T t ) of the macroradicals. Thus, stable macroradicals of butyl methacrylate ( T g 20°C) and and methyl acrylate ( T g 3°C) were not obtained at a polymerization temperature of 50°C. Good yields of block copolymers of methyl methacrylate and acrylonitrile were obtained by the addition of acrylonitrile to the methyl methacrylate macroradical in methanol, ethanol, 1-propanol and hexane at 50°C. The rate of formation of the block copolymer decreased in these poor solvents as the differences between the solubility parameter of the solvent and macroradical increased. The block copolymer samples prepared at temperatures of 50°C and above were dissolved in benzene which is a non-solvent for acrylonitrile homopolymer, but is a good solvent for poly(methyl methacrylate) and the block copolymer. The presence of acrylonitrile and methyl methacrylate in the benzene-soluble macromolecule was demonstrated by pyrolysis gas chromatography, infra-red spectroscopy and differential thermal analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call