Abstract
The integration of simple components to generate sophisticated hybrid materials with fine-tuned properties represents a significant scientific challenge. Herein, we present recent advances in the use of polymers to control the synthesis and properties of three of the most relevant inorganic nanoparticles, namely, quantum dots (QDs), magnetic nanoparticles (MNPs), and noble metal nanoparticles (NMNPs). We show relevant examples of how polymeric structures synthesized by techniques such as ATRP, RAFT, and living cationic polymerization are used to aid in the synthesis and stabilization of the nanostructures to generate nanocomposites with outstanding capabilities. Special emphasis is placed on describing how some of the exceptional physicochemical properties of polymers are used as nanoreactors to facilitate the synthesis of the nanostructure by providing an adequate chemical environment. Additionally, we also describe how polymers are utilized to protect the integrity of the nanostructure from chemical degradation. The integration of polymeric structures and the nanostructures has a strong impact on the dispersion and morphology of the latter and, consequently, endow them with novel and promising features. The advances described here, particularly the use of polymers to modulate and provide new properties to nanoparticles, exemplify the great versatility of polymers and how these may expand the capabilities of inorganic nanostructures that can be used to generate novel and sophisticated hybrid materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.