Abstract

The polymerization shrinkage of methacrylate-based composites is among the most important causes of failure of composite restorations. The manufacturers claim that bulk-fill composites have a lower polymerization shrinkage than conventional composites. This study aimed to assess the polymerization shrinkage of five bulk-fill composites in comparison with a conventional composite. In this in-vitro experimental study, composite discs (n=30) were fabricated using everX Posterior (EXP), Filtek Bulk-Fill Posterior (FBP), SonicFill 2 (SF2), Tetric N-Ceram Bulk-Fill (TNB), X-tra fil (XF), and Filtek Z250 conventional composite at the center of a metal ring bonded to a microscope slide and were covered with a coverslip. This assembly was transferred to a linear variable differential transformer (LVDT). Light-curing (1200 mW/cm2) was performed from underneath the slide for 30 seconds. The deflecting disc method and LVDT were used to assess the dimensional changes of the samples (indicative of polymerization shrinkage) at 1, 30, 60, and 1800 seconds following the onset of light irradiation. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test. The groups were significantly different regarding polymerization shrinkage (P<0.002). The polymerization shrinkage of the tested composites following the onset of light irradiation ranged from 0.19 to 3.03. EXP showed a significantly higher polymerization shrinkage than other composites at 30, 60, and 1800 seconds after light irradiation, while XF showed the lowest polymerization shrinkage at the aforementioned time points. The tested bulk-fill composites had a polymerization shrinkage similar to that of the conventional composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.