Abstract

Modeling of polystyrene (PS) with various stereosequences in γ-cyclodextrin (γ-CD) channels has been conducted and it was found that only isotactic PS stereoisomers can fit into the γ-CD cavity. Thus, based on the modeling of stereoisomeric polystyrenes in narrow γ-CD channels, it was suggested that PSs with unusual microstructures might be produced via constrained polymerization of styrene monomer in its γ-CD-IC crystals. The in situ polymerization of styrene inside the narrow channels of its γ-CD-IC crystals suspended in aqueous media was performed. Alternatively, the solid-state polymerization of styrene/γ-CD-IC has also been conducted by exposure to γ-radiation. It was found that most host γ-CD molecules slip off during polymerization and the channel structure was not preserved. Consequently, much of the guest styrene monomer polymerizes outside of the host γ-CD channels, where the constrained environment is absent. Yet, a lightly rotaxanated structure has been obtained, where some threaded γ-CD molecules ∼15 wt% (∼1 γ-CD per 70 PS repeat units) are permanently entrapped along the PS chains after polymerization. 13C NMR spectra of PSs synthesized from styrene/γ-CD-IC and homogeneously in toluene show some differences, which are presumably due to variations in the stereosequences of PSs obtained from the partially constrained polymerization of styrene/γ-CD-IC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call