Abstract

The removal of toxic contaminants from water still remains a huge challenge for water supplying companies and municipalities. Both organic and inorganic (mostly heavy metal) pollutants are often present in water distribution networks as a result of agricultural, domestic and industrial operations. To remove these pollutants from water distribution networks, effective techniques need to be developed. In our laboratories, research that involves the use of polymers of cone-shaped cyclodextrins (CDs) interconnected by linkers has been successfully demonstrated in the removal of organic pollutants from water. We have now undertaken a programme whereby polymers possessing moieties capable of removing both organic and inorganic contaminants from water, the so-called multifunctional complexes will be synthesised. To access these multifunctional complexes, CDs were attached to salts of organic cations (i.e. imidazolium and pyridinium) in a manner similar to the formation of ionic liquids (ILs). These cyclodextrin-ionic liquid (CD-IL) derivatives were then polymerised with bifunctional linkers with the expectation that the resulting polymers will be able to perform the dual role of removing a wide range of both organic and inorganic pollutants from water. Pollutants from many industries often end up in water systems; other pollutants emanate from domestic and agricultural run-offs. Organic pollutants such as organic solvents, pesticides, fungicides and inorganic pollutants such as nitrates, cyanides and dissolved gases are present in many water systems (Schwarzenbach et al, 2003). When these pollutants are introduced into the environment, they are subjected to physical, chemical and biological processes, leading in the generation of derivatives possessing different environmental behaviour and effects (Schwarzenbach et al, 2003). These contaminants may leach into the soil and contaminate ground water. They also tend to bioaccumulate in the bodies of organisms. The small size and chemical inertness (or unreactiveness) of these pollutants make their removal from water using the current water treatment methods difficult (Li and Ma, 1999). Also, they have health effects such as kidney and liver damage, the destruction of nerve and circulatory systems and other psychological effects detrimental to human health. Since communities need ultra pure water, there is a need to remove pollutants even at very low concentrations to ensure the health and safety of water users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call