Abstract

The molecular structure of benzoxazine is closely related to its polymerization activity and the properties of its polymer. In this work, benzoxazines were successfully synthesized from phenol, paraformaldehyde and meta-substituted anilines. Their polymerization behaviors were discussed by non-isothermal differential scanning calorimetry (DSC). Moreover, the thermal properties of corresponding polybenzoxazines were evaluated using DSC and thermogravimetric analysis. The results showed that the electron-withdrawing substituent increased the polymerization temperature while the electron-donating substituent lowered the polymerization temperature. The glass transition temperature decreased for polybenzoxazine with electron-donating substituent but elevated for polybenzoxazine with electron-withdrawing substituent. Besides, the thermal stability and thermal degradation mechanism of polybenzoxazine were significantly affected by the substituent. This work supplied further insight in the structure-property relationship of benzoxazine resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.