Abstract
A polymerizable disulfide paclitaxel (PTX) prodrug was synthesized by the consequential esterification reactions of 3,3′-dithiodipropionic acid (DTPA), a disulfide compound containing two active carboxyl groups, with 2-hydroxyethyl methacrylate (HEMA) and PTX. The structure of the prodrug was confirmed by 1H NMR characterization. Then, the polymerizable prodrug was copolymerized with poly(ethylene glycol) methyl ether methacrylate (PEGMEA) to obtain a copolymer with hydrophilic PEG side chains and PTX covalently linked onto the backbone via disulfide bonds. The loading content of PTX was 23%. In aqueous solution, this copolymer prodrug could self-assemble into micelles, with hydrophobic PTX as the cores and hydrophilic PEG-segment as the shells. In vitro cell assay demonstrated that this copolymer prodrug showed more apparent cytotoxicity to cancer cells than to human normal cells. After incubation for 48h, the cell viability of HEK-293 cells (human embryo kidney cells) at 0.1μg/mL PTX still remained more than 90%, however, that of HeLa cells (human cervical cancer cells) decreased to 52%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.