Abstract

In search of intrinsic factors that contribute to the distinctively strong immunogenicity of a non-mutated cancer/testis antigen, we found that NY-ESO-1 forms polymeric structures through disulfide bonds. NY-ESO-1 binding to immature dendritic cells was dependent on its polymeric structure and involved Toll-like receptor-4 (TLR4) on the surface of immature dendritic cells in mouse and human. Gene gun-delivered plasmid encoding the wild-type NY-ESO-1 readily induced T cell-dependent antibody (Ab) responses in wild-type C57BL/10 mice but not TLR4-knock-out C57BL/10ScNJ mice. Disrupting polymeric structures of NY-ESO-1 by cysteine-to-serine (Cys-to-Ser) substitutions lead to diminished immunogenicity and altered TLR4-dependence in the induced Ab response. To demonstrate its adjuvant effect, NY-ESO-1 was fused with a major mugwort pollen allergen Art v 1 and a tumor-associated antigen, carbonic anhydrase 9. Plasmid DNA vaccines encoding the fusion genes generated robust immune responses against otherwise non-immunogenic targets in mice. Polymeric structure and TLR4 may play important roles in rendering NY-ESO-1 immunogenic and thus serve as a potent molecular adjuvant. NY-ESO-1 thus represents the first example of a cancer/testis antigen that is a also damage-associated molecular pattern.

Highlights

  • In search of intrinsic factors that contribute to the distinctively strong immunogenicity of a non-mutated cancer/testis antigen, we found that NY-ESO-1 forms polymeric structures through disulfide bonds

  • In search of intrinsic factors derived from the host and the tumor that contribute to anti-tumor immune responses, we focused on NY-ESO-1, a non-mutated cancer/testis antigen with distinctively strong immunogenicity [9]

  • Even though NY-ESO-1 expression is much lower than most tumor-associated antigens (TAA) in cancer cells [11], it naturally induces a profound helper T cell and class-switched Ab response in cancer patients [12]

Read more

Summary

Introduction

In search of intrinsic factors that contribute to the distinctively strong immunogenicity of a non-mutated cancer/testis antigen, we found that NY-ESO-1 forms polymeric structures through disulfide bonds. Direct binding of recombinant NY-ESO-1 to human and mouse DC was blocked by anti-TLR4 Ab in a similar manner as did anti-CRT Ab (Fig. 2B); Ab against ␤-actin served as negative controls with no apparent blocking of NY-ESO-1 and immature DC interaccomplex and cell lysate.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.