Abstract

The ever-increasing demand for natural products and biotechnology derived from bees and ultra-modernization of various analytical devices has facilitated the rational and planned development of biotechnology products with a focus on human health to treat chronic and neglected diseases. The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and evaluate the cytotoxic activity of “multiple-constituent extract in co-delivery system” for antileishmanial therapies. The polymeric nanoparticles loaded with red propolis extract were prepared with a combination of poly-ε-caprolactone and pluronic using nanoprecipitation method and characterized by different analytical techniques, antioxidant and leishmanicidal assay. The red propolis nanoparticles in aqueous medium presented particle size (200–280 nm) in nanometric scale and zeta analysis (−20 to −26 mV) revealed stability of the nanoparticles without aggregation phenomenon during 1 month. After freeze-drying method using cryoprotectant (sodium starch glycolate), it was possible to observe particles with smooth and spherical shape and apparent size of 200 to 400 nm. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis revealed the encapsulation of the flavonoids from the red propolis extract into the polymeric matrix. Ultra performance liquid chromatography coupled with diode array detector (UPLC-DAD) identified the flavonoids liquiritigenin, pinobanksin, isoliquiritigenin, formononetin and biochanin A in ethanolic extract of propolis (EEP) and nanoparticles of red propolis extract (NRPE). The efficiency of encapsulation was determinate, and median values (75.0 %) were calculated using UPLC-DAD. 2,2-Diphenyl-1-picryhydrazyl method showed antioxidant activity to EEP and red propolis nanoparticles. Compared to negative control, EEP and NRPE exhibited leishmanicidal activity with an IC50 value of ≅38.0 μg/mL and 31.3 μg/mL, 47.2 μg/mL, 154.2μg/mL and 193.2 μg/mL for NRPE A1, NRPE A2, NRPE A3 and NRPE A4, respectively. Nanoparticles loaded with red propolis extract in co-delivery system and EEP presented cytotoxic activity on Leishmania (V.) braziliensis. Red propolis extract loaded in nanoparticles has shown to be potential candidates as intermediate products for preparation of various pharmaceutical dosage forms containing red propolis extract in the therapy against negligible diseases such as leishmaniasis.Graphical Some biochemical mechanisms of cellular debridement of Leishmania (V.) braziliensis species by the flavonoids of red propolis extract (EEP) or NRPE loaded with red propolis extractElectronic supplementary materialThe online version of this article (doi:10.1186/s11671-016-1517-3) contains supplementary material, which is available to authorized users.

Highlights

  • Propolis is a biotechnological product with biological activities produced by bees of the species Apis mellifera from plant exudates which are collected and added to organics or salivary secretions

  • The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and access the antioxidant and leishmanicidal activity of “multiple-constituent extract in co-delivery system” present in red propolis extract loaded in a nanoparticulate system

  • Characterization of Suspension of Nanoparticles Loaded with Red Propolis Extract Particle Size, pH and Zeta Potential The results for the assays performed for suspensions of nanoparticles of nanoparticles of red propolis extract (NRPE) are shown in Table 2 and confirmed the characteristics of a nanoparticulate system

Read more

Summary

Introduction

Propolis is a biotechnological product with biological activities produced by bees of the species Apis mellifera from plant exudates which are collected and added to organics or salivary secretions. The presence of secondary metabolites from plants like phenolic acids, phenolic esters, flavonoids, clerodanes, lupeones, propolones, prenylated benzophenones have been identified in different propolis around the world and are responsible for the biological activities in propolis raw material [1]. These compounds in whole are considered a “multiple-constituent extract” from a natural product and has a multi-target purpose in biological systems [2]. The red propolis present the unique characteristics of chemical composition and multiple biological activities in addition to standardized production in the areas of mangroves swamps of Alagoas, Brazil, respecting a environment conservation policy of the Atlantic rainforest. The production of red propolis raw material and hydroalcoholic extract is part of a production chain of apiceuticals and bioproducts that promotes sustainable development in the region of mangroves and lagoons being awarded the geographical indication label with the designation of origin

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call