Abstract

Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential −23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

Highlights

  • Nanotechnology defines the study and production of structures and devices on a nanoscale range

  • Various methods are proposed for the preparation of drug loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles such as an emulsion solvent evaporation method [10], nanoprecipitation method [11], double emulsion solvent evaporation method [12] etc

  • 3.1.1 Effect of sonication time In emulsion solvent evaporation technique the fundamental step is the addition of energy to obtain the emulsion and it is provided by sonication

Read more

Summary

Introduction

Nanotechnology defines the study and production of structures and devices on a nanoscale range. Various methods are proposed for the preparation of drug loaded PLGA nanoparticles such as an emulsion solvent evaporation method [10], nanoprecipitation method [11], double emulsion solvent evaporation method [12] etc. Many stabilizers are used to prevent the aggregation of these nanoparticles [13] and different organic solvents are used to dissolve the polymer and drug [14]. Diazepam is a lipophilic benzodiazepine derivative drug. Benzodiazepines are considered the treatment of choice for acute management of cruel seizures. Benzodiazepines are active against a wide range of seizure types, have a rapid onset of action once delivered into the central nervous system, and are safe [15]. The IUPAC name of diazepam is 7-chloro-1,3-dihydro-1-methyl-5- phenyl1,4-benzodiazepin-2(3H)-one, it is widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia, anxiety and for induction and maintenance of anesthesia [16].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call