Abstract

An organized combination of stiff and elastic domains within a single material can synergistically tailor bulk mechanical properties. However, synthetic methods to achieve such sophisticated architectures remain elusive. We report a rapid, facile, and environmentally benign method to pattern strong and stiff semicrystalline phases within soft and elastic matrices using stereo-controlled ring-opening metathesis polymerization of an industrial monomer, cis-cyclooctene. Dual polymerization catalysis dictates polyolefin backbone chemistry, which enables patterning of compositionally uniform materials with seamless stiff and elastic interfaces. Visible light-induced activation of a metathesis catalyst results in the formation of semicrystalline trans polyoctenamer rubber, outcompeting the formation of cis polyoctenamer rubber, which occurs at room temperature. This bottom-up approach provides a method for manufacturing polymeric materials with promising applications in soft optoelectronics and robotics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.