Abstract
Scirrhous gastric cancer (SGC) is a recalcitrant tumor, which is among the most lethal cancers. A critical issue for the improvement of SGC prognosis is the lack of an effective imaging method for accurate detection and diagnosis. Because combined nuclear medicine imaging with magnetic resonance imaging (MRI) has the ability to detect cancer with high sensitivity, and quantitation and spatial resolution, it has potential to overcome the issues with SGC detection. Herein, we designed and synthesized a new block copolymer poly(ethylene glycol)-b-poly(γ-benzyl l-glutamate) linked with a chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA-PEG-b-PBLG) to provide a platform for multimodal tomographic imaging. We then successfully prepared DOTA-functionalized polymeric micelles (DOTA/m) measuring 30 nm in diameter, which is an appropriate size to penetrate deeply into tumors with thick fibrosis, including SGC. 111In-labeled DOTA/m highly accumulated in Colon-26 tumors (mouse colon cancer with hyperpermeability), but also in OCUM-2 M LN tumors (SGC with hypopermeability), clearly depicting both tumors by single photon emission computed tomography (SPECT). Gd-labeled DOTA/m clearly visualized OCUM-2 M LN tumors by MRI with high spatial resolution. Moreover, 111In/Gd-labeled micelles, as well as the mixture of 111In- and Gd-labeled DOTA/m demonstrated the capability of this system for selective multimodal SPECT/MR imaging of SCG. Our findings support 111In/Gd-DOTA-labeled micelles as a clinical translationable modality for multimodal tomographic imaging capable of detecting SGC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.