Abstract

Porous implant prostheses can effectively reduce the stress shielding effect. Still, the single elastic modulus prosthesis cannot adapt to the individual skeletal variability, so it is necessary to optimize the structural parameters of the prosthesis to overcome the individual variability. In this regard, this study analyzes the law of structural parameters and mechanical properties after selecting the type of porous structure (diamond structure). It proposes the optimization method of the structural parameters on this basis. First, the functional relationship equations between the unit mass of the porous implant prosthesis, the elastic modulus of the porous implant prosthesis, and the structural parameters were established respectively. Second, the support rod length and radius of the porous implant prosthesis are optimized by a genetic algorithm to form the optimization design method of the porous implant prosthesis. Finally, the feasibility and effectiveness of the optimized design of the porosity implanted prosthesis were verified by animal experiments, and the optimized implanted prosthesis with optimized structural parameters increased bone growth by 20-30% compared to the control group in the animal body. The proposed method provides a theoretical basis and technical support for the rehabilitation of patients and the production of prostheses by physicians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.