Abstract
Rare earth elements (REEs) play indispensable roles in various advanced technologies, from electronics to renewable energy. However, the heavy global REEs supply and the environmental impact of traditional mining practices have spurred the search for sustainable REEs recovery methods. Polymeric materials have emerged as promising candidates due to their selective adsorption capabilities, versatility, scalability, and regenerability. This paper provides an extensive overview of polymeric materials for REEs recovery, including polymeric resins, polymer membranes, cross-linked polymer networks, and nanocomposite polymers. Each category is examined for its advantages, challenges, and notable developments. Furthermore, we highlight the potential of polymeric materials to contribute to eco-friendly and efficient REEs recovery, while acknowledging the need to address challenges such as selectivity, stability, and scalability. The research in this field actively seeks innovative solutions to reduce reliance on hazardous chemicals and minimize waste generation. As the demand for REEs continues to rise, the development of sustainable REEs recovery technologies remains a critical area of investigation, with the collaboration between researchers and industry experts driving progress in this evolving field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.