Abstract
The synthesis and functionalization of porous organic cages (POCs) for separation have attracted growing interest over the past decade. However, the potential of solid-phase POCs for practical, large-scale separations will require incorporation into appropriate gas-solid or liquid-solid contactors. Contactors with more effective mass transfer properties and lower pressure drops than pelletized systems are preferred. Here, we prepared and characterized fiber sorbents with POCs throughout a cellulose acetate (CA) polymer matrix, which were then deployed in model separations. The POC CC3 was shown to be stable after exposure to spinning solvents, as confirmed by NMR, powder X-ray diffraction, and gas sorption experiments. CC3-CA fibers were spun using the dry-jet wet-quench spinning method. Spun fibers retained the adsorptive properties of CC3 powders, as confirmed by CO2 and N2 physisorption and TGA, reaching upward of 60 wt % adsorbent loading, whereas the pelletized CC3 counterparts suffered significant losses in textural properties. The separation capabilities of the CC3-CA fibers are tested with both simulated postcombustion flue gas and with Xe/Kr mixtures. Fixed bed breakthrough experiments performed on fibers samples show that CC3 embedded in polymeric fibers can effectively perform these proof-of-concept gas separations. The development of fiber sorbents embedded with POCs provides an alternative to traditional pelletization for the incorporation of these materials into adsorptive separation systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.