Abstract

There has been much recent interest in the use of porous materials derived from self-assembling, shape-persistent organic cages due to their solubility and easy post-synthetic modification. Herein we report the preparation of novel mixed-matrix membranes (MMMs) employing the porous organic cage Noria and its derivatives Noria-Boc and Noria-COtBu as the fillers, and a fluorine containing polyimide, 6FDA-DAM, as the polymeric matrix. The physical structures and properties of Noria and its derivatives were measured and investigated. Noria with substituents of Boc (cleaved by thermal treatment during the process of membrane fabrication) and COtBu groups tend to show much better compatibility with polyimide than Noria itself, resulting in homogeneous dispersion of nanoaggregates and fine adhesion between the two phases in the derived Noria/6FDA-DAM and Noria-COtBu/6FDA-DAM MMMs. Gas permeation tests revealed that Noria and Noria-COtBu nanoparticles have different effect on gas separation performance of MMMs. The introduction of Noria into 6FDA-DAM tends to enhance CO2/CH4 selectivity and thus improve its gas separation properties, though a decrease in the observed permeability could be observed. In contrast, the introduction of Noria-COtBu with higher surface area and larger pores tends to increase the free volume and gas permeability of MMMs. These results show that both the morphology and the gas separation properties of MMMs could be tuned by tailoring the structures of porous organic cages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.