Abstract

A one-step inverse emulsion process using amphiphilic surface-active copolymers for the synthesis of hydrophobized, shape-anisotropic inorganic nanoparticles is presented. While such structures are normally prepared sequentially by particle formation and hydrophobization, we have combined both reactions. This approach is demonstrated exemplarily with zinc oxide (ZnO) nanoparticles. A key issue is the design of amphiphilic copolymers that act as emulsifiers to enable an aggregate-free redispersion of the particles and to stabilize the inverse emulsion for the precipitation in the droplets. In a first approach, the stabilizing as well as the hydrophobizing property of the copolymers are combined with the ability to control the crystallization in one polymer (structure-directing emulsifier—SDE). In a second approach, a mixture of two polymers is applied: an amphiphilic copolymer for hydrophobizing/stabilizing the inorganic nanoparticles and a polar or double hydrophilic polymer that induces the anisotropic growth of the ZnO nanocrystals (structure-directing agents—SDA). Homopolymers and block copolymers, consisting of phosphonic acid groups or propylene oxide groups, were used as SDAs. Typically, hydrophobized shape-anisotropic particles of up to 600 nm in length and with an aspect ratio of 1:4 were obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.