Abstract

A theory is developed to describe the conformation change of polymers in flow through dilute, random fixed beds of spheres or fibres. The method of averaged equations is used to analyse the effect of the stochastic velocity fluctuations on polymer conformation via an approach similar to that used in our previous analysis of particle orientation in flow through these beds (Shaqfeh & Koch 1988 a, b ). The polymers are treated as passive tracers, i.e. the polymeric stress in the fluid is neglected in calculating the stochastic flow field. Simple dumbbell models (either linear or FENE) are used to model the polymer conformation change. In all cases we find that the long-range interactions provide the largest contribution (in the limit of vanishingly small bed volume fraction) to an evolution equation for the probability density of conformation. These interactions create a conformation-dependent diffusivity in such an equation. Solutions for the second moment of the distribution demonstrate that there is a critical pore-size Deborah number beyond which the radius of gyration of a linear dumbbell will grow indefinitely and that of the FENE dumbbell will grow to a large fraction of its maximum extensibility. This behaviour is shown to be related to the development of ‘algebraic tails’ in the distribution function. The physical reasons for this critical condition are examined and its dependence on bed structure is analysed. These results are shown to be equivalent to those which we derive by the consideration of a polymer in a class of anisotropic Gaussian flow fields. Thus, our results are explicitly related to recent work regarding polymer stretch in model turbulent flows. Finally, the effect of close interactions and their modification of our previous results is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call