Abstract

We synthesized an ultra low bandgap terpolymer denoted as P containing fluorinated-fluorene attached thiadiazoloquinoxaline and benzothiadiazole acceptors and thiophene as donor in its backbone and investigated its optical and electrochemical properties. This terpolymer is used for as donor along with PC71BM as electron acceptor in solution processed polymer solar cells (PSCs). The P showed a shows strong absorption band from 650 nm to 1100 nm with an optical bandgap of 1.12 eV and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of −5.25 eV and −3.87 eV, respectively. After the optimization of P to PC71BM weight ratio, the optimized weight ratio 1:2 in chlorobenzene (CB) solution, the PSC showed overall power conversion efficiency of 4.10% (Jsc of 10.96 mA/cm2, Voc of 0.68 V and FF of 0.55). After the solvent additive (3 v% DIO) followed by subsequent thermal annealing (SA-TA) the PCE has been increased up to 7.54% with Jsc of 16.12 mA/cm2, Voc of 0.65 V and FF of 0.72. The increase in the PCE is related with the enhancement in the both Jsc and FF, attributed optimized nanoscale morphology of the active layer for both efficient exciton dissociation and charge transport towards the electrodes and balanced charge transport in the device, induced by the TSA treatment of the active layer. This is the highest PCE of PSCs with an energy loss about 0.47 eV with the low bandgap of 1.12 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.