Abstract

The zonal organization of cells and extracellular matrix (ECM) constituents within articular cartilage is important for its biomechanical function in diarthroidal joints. Tissue-engineering strategies adopting porous three-dimensional (3D) scaffolds offer significant promise for the repair of articular cartilage defects, yet few approaches have accounted for the zonal structural organization as in native articular cartilage. In this study, the ability of anisotropic pore architectures to influence the zonal organization of chondrocytes and ECM components was investigated. Using a novel 3D fiber deposition (3DF) technique, we designed and produced 100% interconnecting scaffolds containing either homogeneously spaced pores (fiber spacing, 1 mm; pore size, about 680 microm in diameter) or pore-size gradients (fiber spacing, 0.5-2.0 mm; pore size range, about 200-1650 microm in diameter), but with similar overall porosity (about 80%) and volume fraction available for cell attachment and ECM formation. In vitro cell seeding showed that pore-size gradients promoted anisotropic cell distribution like that in the superficial, middle, and lower zones of immature bovine articular cartilage, irrespective of dynamic or static seeding methods. There was a direct correlation between zonal scaffold volume fraction and both DNA and glycosaminoglycan (GAG) content. Prolonged tissue culture in vitro showed similar inhomogeneous distributions of zonal GAG and collagen type II accumulation but not of GAG:DNA content, and levels were an order of magnitude less than in native cartilage. In this model system, we illustrated how scaffold design and novel processing techniques can be used to develop anisotropic pore architectures for instructing zonal cell and tissue distribution in tissue-engineered cartilage constructs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call