Abstract

We designed and fabricated large arrays of polymer pens having sub-20 nm tips to perform chemical lift-off lithography (CLL). As such, we developed a hybrid patterning strategy called polymer-pen chemical lift-off lithography (PPCLL). We demonstrated PPCLL patterning using pyramidal and v-shaped polymer-pen arrays. Associated simulations revealed a nanometer-scale quadratic relationship between contact line widths of the polymer pens and two other variables: polymer-pen base line widths and vertical compression distances. We devised a stamp support system consisting of interspersed arrays of flat-tipped polymer pens that are taller than all other sharp-tipped polymer pens. These supports partially or fully offset stamp weights thereby also serving as a leveling system. We investigated a series of v-shaped polymer pens with known height differences to control relative vertical positions of each polymer pen precisely at the sub-20 nm scale mimicking a high-precision scanning stage. In doing so, we obtained linear-array patterns of alkanethiols with sub-50 nm to sub-500 nm line widths and minimum sub-20 nm line width tunable increments. The CLL pattern line widths were in agreement with those predicted by simulations. Our results suggest that through informed design of a stamp support system and tuning of polymer-pen base widths, throughput can be increased by eliminating the need for a scanning stage system in PPCLL without sacrificing precision. To demonstrate functional microarrays patterned by PPCLL, we inserted probe DNA into PPCLL patterns and observed hybridization by complementary target sequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call