Abstract

Abstract In this investigation we report the preparation of a hybrid material based on graphene oxide (GO) and POSS by surface modification of graphene oxide (GO) via SI-ATRP of methacryloisobutyl POSS (MAPOSS) and synthesis of composite hydrogel based on this material. This hybrid material (GO-PMAPOSS) was duly characterized by FTIR, Raman analysis, GPC, TEM, FESEM, goniometry and TGA analyses. Compared to GO, PMAPOSS modified GO showed better solubility in organic solvent (THF) and higher hydrophobicity. Later this GO-PMAPOSS hybrid material was introduced into starch-polyacrylamide based semi IPN hydrogel which was prepared by using free radical polymerization of acrylamide in presence of starch. TEM and FESEM analyses revealed that GO-PMAPOSS hybrid material formed a hydrophobic path inside the hydrogel through self-association of the hydrophobic POSS chains. It was noticed that the presence of this hydrophobic part on hydrogel surface and in bulk phase helped to reduce the platelet adhesion as compared to hydrogel without GO-PMAPOSS hybrid material. The composite hydrogel also showed superior red blood cell compatibility and good cytocompatibility. This composite hydrogel was capable of performing controlled release of drug. Here Ciprofloxacin was used as a model antibiotic drug.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.