Abstract

A comprehensive study of the effect of material, geometric, and operating variables on the onset of melt flow instabilities in extrusion was made. Primary objectives were to compare such melt instabilities for a variety of materials and to correlate instability criteria with independent rheological parameters. Seven polymer melts were studied: two polyethylenes, polypropylene, polystyrene, two polybutadienes, and an SBR copolymer. Two distinct extrusion apparatuses were used: a die fed by a screw extruder system and a die fed by an Instron rheometer. The variables studied were temperature, entry cone angle, length/diameter ratio of the die, and flow rate. Independent rheological measurements were performed. These consisted of the evaluation of normal stresses on the Weissenberg rheogoniometer, entrance pressure drop measurements on the Instron rheometer, and viscosity measurements on both instruments and the screw extruder. In a companion study, flow visualization studies were made in the die entry region of the Instron rheometer, for most of the above materials and also a solution of polyisobutylene and glycerine. Distinctively different patterns were observed for the various materials, ranging from severe channeling with corner eddies to nonchanneling flow. Interrelationships between the onset of instabilities with other measurements were noted. In comparing a variety of materials, a decrease in the critical shear rate is generally associated with an increased tendency of the material to channel, an increased normal stress/shear stress ratio and an increased entrance pressure drop/shear stress ratio. It is argued that the instability phenomena are strongly associated with the elastic properties of the materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.