Abstract

Secondary flow in cone-and-plate viscometers is studied by numerical integration of the equations of motion for steady incompressible flow of Newtonian fluids. Solutions over wide ranges of the two principal parameters, Reynolds number and gap angle, yield detailed information on the flow fields and elements of the rate of deformation tensor. Secondary flows are shown to cause large deviations in certain elements of the rate of deformation at Reynolds numbers more than an order of magnitude lower than those at which the torque is appreciably changed. Comparisons are given with prior analytical and experimental work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.