Abstract

Nanohybrid objects based on polymer and platinum nanoparticles are of great interest for applications in fuel cells or as biosensors. The polymer part can help first to stabilize and to organize the particles, second to increase the amount of chemical functions available in the organic corona, and, finally, to improve or to mask the properties of the particles. The method to introduce the polymer consists of using both the "grafting from" technique and controlled radical polymerization (atom transfer radical polymerization). Small-angle neutron scattering (SANS) is a well-suited technique for the study of these objects, particularly due to the possibility to use contrast matching to see either the particle or the polymer corona. Polymerization kinetics was followed by SANS and the polymer corona spectra showed a plateau at small q which attested that the objects are individual and well-dispersed. These systems were exempt of free polymers, so the characterization via SANS could lead to quantitative data such as the radius of gyration of the object, the amount of grafted chains and the molecular weight of the chains, using a star model to fit the data. Langmuir films have then been obtained directly from the polymer-grafted-nanoparticles solutions, and compression isotherms have been recorded followed by transmission electron microscopy (TEM) characterization of the films at different pressures. A good correlation has therefore been observed from the distances between objects calculated using the compression isotherms or observed via TEM and the objects' dimensions determined from SANS study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.