Abstract
ABSTRACTPoly(sodium styrenesulfonate)-functionalized graphene was prepared from graphene oxide, using atom transfer radical polymerization and free radical polymerization. In atom transfer radical polymerization route, the amine-functionalized GO was synthesized through hydroxyl group reaction of GO with 3-amino propyltriethoxysilane. Atom transfer radical polymerization initiator was grafted onto modified GO (GO-NH2) by reaction of 2-bromo-2-methylpropionyl bromide with amine groups, then styrene sulfonate monomers were polymerized on the surface of GO sheets by in situ atom transfer radical polymerization. In free radical polymerization route, the poly(sodium 4-styrenesulfonate) chains were grafted on GO sheets in presence of Azobis-Isobutyronitrile as an initiator and styrene sulfonate monomer in water medium. The resulting modified GO was characterized using range of techniques. Thermal gravimetric analysis, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy results indicated the successful graft of polymer chains on GO sheets. Thermogravimetric analysis showed that the amount of grafted polymer was 22.5 and 31 wt% in the free radical polymerization and atom transfer radical polymerization methods, respectively. The thickness of polymer grafted on GO sheets was 2.1 nm (free radical polymerization method) and 6 nm (atom transfer radical polymerization method) that was measured by atomic force microscopy analysis. X-ray diffractometer and transmission electron microscopy indicated that after grafting of poly(sodium 4-styrenesulfonate), the modified GO sheets still retained isolated and exfoliated, and also the dispersibility was enhanced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.