Abstract

We present an alternating current (ac) circuit based on a misoriented bilayer graphene device for analog and digital phase detection. We exploit the ambipolar nature of the transfer characteristics of a misoriented bilayer graphene transistor. The transistor action here is realized using an electrochemical gate integrated into a solid polymer electrolyte layer. This unique combination provides a voltage gain close to unity under ambient conditions, which is one order of magnitude higher than that attainable in back-gated devices. The achieved gain provides sufficient sensitivity to detect phase differences between pairs of analog or digital signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.