Abstract

We analyze the semiclassical and quantum polymer dynamics of the isotropic Universe in terms of both the standard Ashtekar-Barbero-Immirzi connection and its conjugate momentum and also of the new generalized coordinate conjugate to the Universe volume. We study the properties of the resulting bouncing cosmology that emerges in both the representations and we show that the Big Bounce is an intrinsic cut-off on the cosmological dynamics only when the volume variable is implemented, while in terms of the standard connection the Universe Bounce energy density is fixed by the initial conditions on the prepared wavepacket. As a phenomenological implication, we introduce particle creation as a dissipative term and study the production of entropy in the two formulations. Then, we compare the obtained dynamics with what emerges in Loop Quantum Cosmology, where the same difference in the nature of the Big Bounce is associated to fixing a minimum area eigenvalue in a comoving or in a physical representation. We conclude that the privileged character of the Ashtekar-Barbero-Immirzi connection suggests that the natural scenario in the polymer framework is a Big Bounce that is not a Universal cut-off. However, by a parallelism between the polymer and Loop Quantum Cosmology properties of the basic operators, we also develop some considerations in favour of the viability of the μ¯ scheme of Loop Quantum Cosmology on a semiclassical level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.