Abstract
Polymer-dispersed liquid crystals (PDLCs), consisting of a dispersion of LC-rich domains in a polymer matrix, are used in different types of electrooptical devices. Their efficiency can in principle be increased if the LC domains exhibit a uniform characteristic size in the range of the wavelength of visible light. In an attempt to generate this type of morphology, a model PDLC system based on a 50 wt % solution of N-4-ethoxybenzylidene-4‘-n-butylaniline (EBBA) in an epoxy monomer (diglycidyl ether of bisphenol A, DGEBA) was analyzed. The polymerization-induced phase separation was performed at 80 °C, using a tertiary amine as initiator (benzyldimethylamine, BDMA). By selecting an initial concentration located close to the critical composition to promote spinodal demixing, co-continuous morphologies were obtained, which were rapidly fixed by gelation. The conversion of epoxy groups (p) was followed by near-infrared spectroscopy (NIR). At p = 0.28, phase separation took place as revealed by transmission op...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have