Abstract

AbstractThe application of poly(2,6‐dimethyl‐1,4‐phenylene ether), PPE, as a matrix material for continuous carbon fibre reinforced composites has been studied. Due to the intractable nature of PPE melt impregnation is not feasible and a novel impregnation route, using epoxy resin as a reactive solvent, was developed. The introduction of epoxy resin results in enhanced flow and a reduced processing temperature, enabling the processing of PPE and the preparation of high quality composites. Upon curing, phase separation is initiated and epoxy resin is converted into a second phase. In composites, epoxy resin preferentially accumulates at the polar fibre surface, resulting in an epoxy layer around the fibres, providing a high level of interfacial adhesion. For a high fibre volume fraction (> 50%) this results in the ultimate morphology of epoxy coated fibres in a neat PPE matrix. Due to this unique morphology the composite materials reveal outstanding mechanical properties in terms of interlaminar toughness and impact performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.