Abstract

Conjugated polymer hybrid nanoparticles (NPs) loaded with bothindocyanine green (ICG) and 1,3-diphenylisobenzofuran (DPBF) are described. The NPs are dually functional in thatICG acts as the photosensitizer, and DPBF as a probe for singlet oxygen (1O2 probe). The nanoparticle core consists of the energy donating host poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(2,5-p-xylene) (PFP). The polymer is doped with the energy acceptor DPBF. Ratiometric fluorometric detection of singlet oxygen is accomplished by measurement of fluorescence at wavelengths of 415 and 458nm. In addition, the shell of the positively charged polymeric nanoparticles was modified, via electrostatic interaction, with negatively charged PDT drugs ICG. The integrated nanoparticles of type ICG-DPBF-PFP display effective photodynamic performance under 808-nm laser irradiation. The 1O2 sensing behaviors of samples are evaluated based on the ratiometric fluorescent responses produced by DPBF and PFP. 1O2 can be fluorimetically sensed with a detection limit of 28μM. The multifunctional nanoprobes exhibit effortless cellular uptake, superior photodynamic activity and a rapid ratiometric response to 1O2. Graphical abstractSchematic of a dual-functional nanoplatform for photodynamic therapy (PDT) and singlet oxygen (1O2) feedback. It offers a new strategy for self-monitoring photodynamic ablation. FRET: fluorescence resonance energy transfer. Indocyanine green is attached in the shell of nanoparticles, and 1,3-diphenylisobenzofuran is doped into the energy donating host conjugated polymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call