Abstract

Polylactide [PLA, two enantiomers: poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA)] has been widely applied as biomaterials because of its biocompatibility, biodegradability, and good mechanical capacity. However, the chirality of PLA materials has not been intensively explored yet. In the present study, chiral porous poly(high internal-phase emulsion)s (polyHIPEs) derived from enantiopure PLAs were successfully prepared via a HIPE template method. The resulting polyHIPEs show optical activity. More interestingly, the polyHIPEs demonstrate enantioselective release capacity, using cinchona alkaloid and naproxen as the model chiral drugs. Notably, PLLA-based polyHIPE shows enantioselectivity in both the drug-loading step and drug-releasing step, while PDLA-based polyHIPE fails. The interesting finding is essentially different from other chiral polymer materials reported earlier. The cytotoxicity test demonstrates that all the three types of polyHIPEs, PLLA-, PDLA-, and PDLLA-based polyHIPE show biocompatibility; however, their different chirality exerts varying effects on cell growth. Accordingly, special attention should be devoted to the chirality of PLA when used as biomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.