Abstract

Block copolymer comprising of polyisobutylene (PIB) soft segment and poly(3-(3,5,7,9,11,13,15-heptaisobutyl-pentacyclo[9.5.1.13,9.15,15.17,13]-octasiloxane-1-yl)propyl methacrylate) (PMAPOSS) hard segment was synthesized by combination of living carbocationic and reversible addition-fragmentation chain transfer (RAFT) polymerizations. Block copolymers were characterized by 1H and 29Si NMR spectroscopy, FT-IR study, energy dispersive X-ray spectroscopy (EDX), and gel permeation chromatography (GPC). The EDX, combined with scanning electron microscopy (SEM) was employed for determination of elemental composition. Thermal transition and degradation behaviors were confirmed by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA), respectively. Although both the PIB and MAPOSS homopolymers are amorphous in nature, in their block copolymers the PMAPOSS domain showed crystalline behavior, as confirmed from wide-angle X-ray scattering (WAXS) technique, DSC studies and polarized optical microscopy (POM). Interestingly, crystalline melting temperatures (Tm) can be tuned by changing the PIB to PMAPOSS block length ratios. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1125–1133

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.