Abstract

Reversible addition-fragmentation chain transfer (RAFT) polymerization integrates the advantages of radical polymerization and living polymerization. This work presents the preparation of methionine functionalized biocompatible block copolymers via RAFT polymerization. Firstly, N,N-bis(2-hydroxyethyl)methacrylamide-b-N-(3-aminopropyl)methacrylamide (BNHEMA-b-APMA, BA) was synthesized via RAFT polymerization using 4,4'-azobis(4-cyanovaleric acid) (ACVA) as an initiating agent and 4-cyanopentanoic acid dithiobenzoate (CTP) as the chain transfer agent. Subsequently, N,N-bis(2-hydroxyethyl)methacrylamide-b-N-(3-guanidinopropyl)methacrylamide (methionine grafted BNHEMA-b-GPMA, mBG) was prepared by modifying amine groups in APMA with methionine and guanidine groups. Three kinds of block polymers, mBG1, mBG2, and mBG3, were synthesized for comparison. A ninhydrin reaction was used to quantify the APMA content; mBG1, mBG2, and mBG3 had 21%, 37%, and 52% of APMA, respectively. Gel permeation chromatography (GPC) results showed that BA copolymers possess molecular weights of 16,200 (BA1), 20,900(BA2), and 27,200(BA3) g/mol. The plasmid DNA (pDNA) complexing ability of the obtained block copolymer gene carriers was also investigated. The charge ratios (N/P) were 8, 16, and 4 when pDNA was complexed completely with mBG1, mBG2, mBG3, respectively. When the N/P ratio of mBG/pDNA polyplexes was higher than 1, the Zeta potential of mBG was positive. At an N/P ratio between 16 and 32, the average particle size of mBG/pDNA polyplexes was between 100-200 nm. Overall, this work illustrates a simple and convenient protocol for the block copolymer carrier synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call