Abstract
BackgroundNowadays, the conventional plastic wastes are very challenging to environments and its production cost also creates an economic crisis due to petrochemical-based plastic. In order to solve this problem, the current studies were aimed at screening and characterizing these polyhydroxyalkanoate (PHA)-producing isolates and evaluating the suitability of some carbon source for newly screened PHA-producing isolates. Material and methodsSome carbon sources such as D-fructose, glucose, molasses, D-ribose and sucrose were evaluated for PHA production. Data were analyzed using SPSS version 20. The 16SrRNA gene sequence of these isolates was performed. These newly isolated taxa were related to Bacillus species. It was designated as Bacillus sp. LPPI-18 and affiliated Bacillus cereus ATCC 14577T (AE01687) (99.10%). Paenibacillus sp. 172 (AF273740.1) was used as an outgroup. ResultsBacillus sp. LPPI-18 is a gram-positive, rod-shaped, endospore former, and citrate test positive. This isolate showed positive for amylase, catalase, pectinase, and protease test. They produced intracellular PHA granules when this isolate was stained with Sudan Black B (SBB) and Nile blue A (NBA) preliminary and specific staining dyes, respectively. Both temperature and pH used to affect polyhydroxyalkanoates (PHA) productivity. Bacteria are able to reserve PHA in the form of granules during stress conditions. This isolate produces only when supplied with carbon sources. More PHA contents (PCs) were obtained from glucose, molasses, and D-fructose. In this regard, the maximum mean value of PC was obtained from glucose (40.55±0.7%) and the minimum was obtained from D-ribose (12.4±1.4%). Great variations (P≤0.05) of PCs were observed among glucose and sucrose, molasses and sucrose, and D-fructose and sucrose carbon sources for PHA productivity (PP) of cell dry weight (CDW) g/L. After extraction, PHA film was produced for this typical isolate using glucose as a sole carbon source. Fourier transform infrared spectrum was performed for this isolate and showed the feature of polyester at 1719.64 to 1721.16 wavelengths for these extracted samples. The peak of fingerprinting (band of carboxylic acid group) at this wavelength is a characteristic feature of polyhydroxybutyrate (PHB) and corresponds to the ester functional group (C=O). ConclusionIn this study, newly identified Bacillus sp. LPPI-18 is found to be producing biodegradable polymers that are used to replace highly pollutant conventional plastic polymers. This isolate is also used to employ certain cost-effective carbon sources for the production of PHA polymers. Graphical Abstract▪
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.