Abstract

AbstractDiscrete Laplacians are the basis for various tasks in geometry processing. While the most desirable properties of the discretization invariably lead to the so‐called cotangent Laplacian for triangle meshes, applying the same principles to polygon Laplacians leaves degrees of freedom in their construction. From linear finite elements it is well‐known how the shape of triangles affects both the error and the operator's condition. We notice that shape quality can be encapsulated as the trace of the Laplacian and suggest that trace minimization is a helpful tool to improve numerical behavior. We apply this observation to the polygon Laplacian constructed from a virtual triangulation [BHKB20] to derive optimal parameters per polygon. Moreover, we devise a smoothing approach for the vertices of a polygon mesh to minimize the trace. We analyze the properties of the optimized discrete operators and show their superiority over generic parameter selection in theory and through various experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.