Abstract

We propose a stabilization method for linear tetrahedral finite elements, suitable for the implicit time integration of the equations of nearly and fully incompressible nonlinear elastodynamics. In particular, we derive and discuss a generalized framework for stabilization and implicit time integration that can comprehensively be applied to the class of all isotropic hyperelastic models. In this sense the presented development can be considered an important extension and complement to the stabilization approach proposed by the authors in previous work, which was instead focused on explicit time integration and simple neo-Hookean models for nearly-incompressible elasticity. With the goal of computational efficiency, we also present a two-step block Gauss–Seidel strategy for the time update of displacements, velocities and pressures. Specifically, a mixed system of equations for the velocity and pressure is updated implicitly in a first stage, and the displacements are updated explicitly in a second stage. The proposed mixed formulation is then embedded in Newton-type strategies for the nonlinear solution of the equations of motion. Various implicit time integration strategies are considered, and, particularly, we focus on high-frequency dissipation time integrators, which are preferable in transient mechanics applications. An extensive set of numerical computations with linear tetrahedral elements is presented to demonstrate the performance of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.