Abstract

Depletion of high abundant proteins like albumin and immunoglobulin G (IgG) can be beneficial in the analysis of serum proteins. For this purpose, Cibacron Blue F3GA and iminodiacetic acid (IDA)-Cu2+ containing poly(glycidyl methacrylate) (PGMA) beads (1.6µm in diameter) were embedded into the poly(hydroxyethyl methacrylate) (PHEMA) cryogel. The PGMA beads were prepared by dispersion polymerization. The PGMA beads were modified with Cibacron Blue F3GA and iminodiacetic acid (IDA)-Cu2+ for simultaneous albumin and IgG depletion, respectively. The PHEMA cryogel was synthesized by free radical polymerization in the presence of the modified PGMA beads. The PHEMA and PHEMA/PGMA composite cryogels were characterized by swelling measurements and scanning electron microscopy (SEM). Protein depletion studies were carried out in a continuous experimental set-up in a stacked column. Albumin adsorption capacity of the PGMA-Cibacron Blue F3GA beads embedded PHEMA cryogel (PHEMA/PGMA-Cibacron Blue F3GA) was 342mg/g and IgG adsorption capacity of the PGMA-IDA-Cu2+ beads embedded PHEMA cryogel (PHEMA/PGMA-IDA-Cu2+) was 257mg/g. The composite cryogels depleted albumin and IgG from human serum with 89.4% and 93.6% efficiency, respectively. High desorption values (over 90% for both modified cryogels) were achieved with 0.05M phosphate buffer containing1.0M NaCl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call