Abstract
Upon contact with biofluids, proteins are quickly adsorbed onto the nanoparticle (NP) surface to form a protein corona, which initiates the opsonization and facilitates the rapid clearance of the NP by macrophage uptake. Although polyethylene glycol (PEG) functionalization has been the standard approach to evade macrophage uptake by reducing protein adsorption, it cannot fully eliminate nonspecific uptake. Herein, polyglycerol (PG) grafting is demonstrated as a better alternative to PEG. NPs of various size and material were grafted with PG and PEG at 30, 20, and 10 wt % contents by controlling the reaction conditions, and the resulting NP-PG and NP-PEG were characterized qualitatively by IR spectroscopy and quantitatively by thermogravimetric analysis. Their resistivity to adsorption of the proteins in fetal bovine serum and human plasma were compared by polyacrylamide gel electrophoresis, bicinchoninic acid assay, and liquid chromatography-tandem mass spectrometry, giving a consistent conclusion that PG shields protein adsorption more efficiently than does PEG. The macrophage uptake was assayed by transmission electron microscopy and by extinction spectroscopy or inductively coupled plasma mass spectrometry, revealing that PG avoids macrophage uptake more efficiently than does PEG. In particular, a NP coated with PG at 30 wt % (NP-PG-h) prevents corona formation almost completely, regardless of NP size and core material, leading to the complete evasion of macrophage uptake. Our findings demonstrate that PG grafting is a promising strategy in nanomedicine to improve anti-biofouling property and stealth efficiency in nanoformulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.