Abstract

We prepared a nanofibrous adsorbent for anionic dye removal from aqueous solution by electrospinning a modified polyethylenimine (m-PEI) and polyvinylidene fluoride (PVDF) blend. The electrospun nanofibrous adsorbent was confirmed to be a nanoscale, porous material with a positively charged surface; these characteristics are quite beneficial for anionic contaminant adsorption. Experimental adsorption of an anionic dye, methyl orange (MO), demonstrates that this adsorbent can rapidly remove MO from aqueous solution; its maximum adsorption capacity was 633.3 mg g−1, which is much higher than that of previously reported adsorbents. After immersion in a basic solution, the adsorbent was well regenerated and showed good recyclability. The adsorption performance of the nanofibrous adsorbent is greatly influenced by the temperature, initial MO concentration, and pH of the solution. We further found that MO adsorption onto the adsorbent can be described well by the pseudo-second-order kinetic model and Langmuir isotherm model. Weber-Morris plots suggested that the adsorption of MO onto the nanofibrous mat was affected by at least film diffusion and intraparticle diffusion. This study indicates that nanofibrous PEI composite mats could be promising for treatment of wastewater containing anionic dye.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.