Abstract

Polyethyleneimine (PEI) is a positively charged polymer with hydrogen-bonding sites and hydrophobic chains. Therefore, it has been clearly established as an efficient adsorbent by means of these native properties in the literatures. However, there is apparently no good reason to disregard the use of PEI as a desired desorbent. Herein, using methyl orange as a model anionic dye, we investigated the desorption performances of PEI toward anionic dyes adsorbed on the surface of CO3–layered double hydroxides (LDHs) in a wide range of pH values. The experiment results showed that the positively charged PEI had very strong desorption capacity for anionic dyes at low pH values (<9.5) through electrostatic attraction between PEI and methyl orange because of the high degree of protonation of PEI. At high pH values (>9.5), PEI existed as neutral molecule, it could desorb methyl orange via hydrogen bonding between the amino groups of it and sulfonate group of methyl orange; simultaneously, the anion-exchange process occurred between abundant hydroxyl anions and anionic methyl orange. The adsorption capacity of the used LDH adsorbent was about 80% after five cycles of adsorption–desorption–regeneration, which was much higher than that conducted by 0.1M NaOH solution. These findings suggested that PEI could be regarded as a promising desorbent for enriching anionic dyes in wastewater and regenerating LDHs through surface adsorption–desorption cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call