Abstract
A series of high-density polyethylene/Cloisite 20A/graphite nanocomposites were prepared via melt blending for the production of polymeric pipes for natural gas transfer. The microstructural, mechanical, thermal, electrical and barrier properties of prepared nanocomposites were investigated. An intercalated morphology was observed for prepared nanocomposites. Improved mechanical properties e.g. over 148 % increase in Young’s modulus were observed by incorporating the nanoparticles into the polyethylene matrix. The thermal analysis showed that the melting point of polyethylene was slightly increased by incorporating both fillers, i.e. Cloisite 20A and graphite in it, and the crystallinity was depended on the type of filler. The results showed that the MFI values decreased by incorporating the fillers into the polyethylene matrix and further decreases were observed by increasing the contents of the filler. It was also found that a considerable amount of electrical conductivity is created in graphite loaded nanocomposites. The natural gas permeability investigations revealed of more than 51 % decrease in the permeability by incorporating 5 wt.% of Cloisite 20A to the polyethylene. It was concluded that the prepared nanocomposites due to their enhanced mechanical, thermal and barrier properties along with the conductive nature are excellent materials to be used in the production of polymeric pipes in natural gas distribution and transportation networks.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iranian Journal of Chemistry & Chemical Engineering-international English Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.