Abstract

ABSTRACTHigh density polyethylene nanocomposites loaded with a reinforcing filler (Cloisite 20A as a modified nanoclay) and an electrically conductive filler (Cu nanoparticles) were prepared by a melt blending method. The morphological, mechanical, thermal, and electrical properties of the prepared nanocomposites were investigated to evaluate their performances as appropriate materials for production of reinforced conductive polymeric pipes to be used in natural gas distribution and transportation pipelines. A random and uniform dispersion of both nanoparticles in the polyethylene matrix, with a nanoclay intercalated morphology, was observed by scanning electron microscopy and X-ray diffraction techniques. The results revealed ca. 117, 13 and 21% increases in the Young’s modulus, tensile strength and yield stress of the polyethylene matrix by adding 3 wt.% of Cloisite 20A into it. For the similar conditions, however, more than a 71% decrease was observed for the elongation at break. Thermal analysis demonstrated that the melting points of the nanocomposites were increased by incorporating both fillers and the crystallinity of polyethylene chains was decreased by incorporating Cloisite 20A and then slightly increased by adding Cu nanoparticles. Moreover, the results revealed the creation of conductivity inside the non-conductive polyethylene matrix due to the presence of the conductive Cu nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call