Abstract
This study deals with the preparation and characterization of polyethyl methacrylate/fatty acid blends as a novel form-stable phase change material for latent heat thermal energy storage applications. In the blends, fatty acids act as a phase change material when polyethyl methacrylate is operated as a supporting material. The fatty acids could be retained by 50 wt% into polyethyl methacrylate without melted phase change material seepage from the blends. Therefore, these blends are called form stable composite phase change materials and they have utility advantage without encapsulation in passive latent heat thermal energy storage applications. The prepared fatty acid/polyethyl methacrylate blends (50/50 w/w%) as form-stable phase change material was characterized using optic microscopy and Fourier transform infrared spectroscopy methods and the results showed that the polyethyl methacrylate was physically and chemically compatible with the fatty acids. Thermal properties and thermal stabilities of the form-stable phase change materials were measured using differential scanning calorimetry. Differential scanning calorimetry results indicated that the melting temperatures and latent heats of the prepared phase change materials are in the range of 30.67–61.09°C and 86.93–107.75 J/g, respectively. The thermal cycling test, including 5,000 cycling processes, was conducted to determine the thermal reliability of the synthesized form-stable phase change materials, and it is found that phase change materials were thermally and chemically stable after thermal cycling. On the basis of all the results, it was concluded that form stable polyethyl methacrylate/fatty acids composite phase change materials had important potential for practical latent heat thermal energy storage applications, such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard, or floors impregnated with a form stable phase change material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Energy Sources, Part A: Recovery, Utilization, and Environmental Effects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.