Abstract

Many modern computing applications have been enabled through the use of real-time multimedia processing. While several hardware architectures have been proposed in the research literature to support such primitives, these fail to address applications whose performance and resource requirements have a dynamic aspect. Embedded multimedia systems typically need a power and computation efficient design in addition to good compression performance. In this article, we introduce a Polymorphic Wavelet Architecture (Poly-DWT) as a crucial building block towards the development of embedded systems to address such challenges. We illustrate how our Poly-DWT architecture can potentially make dynamic resource allocation decisions, such as the internal bit representation and the processing kernel, according to the application requirements. We introduce a filter switching architecture that allows for dynamic switching between 5/3 and 9/7 wavelet filters and leads to a more power efficient design. Further, a multiplier-free design with a low adder requirement demonstrates the potential of Poly-DWT for embedded systems. Through an FPGA prototype, we perform a quantitative analysis of our Poly-DWT architecture, and compare our filter to existing approaches to illustrate the area and performance benefits inherent in our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.