Abstract

An essential challenge in diabetic periodontal regeneration is achieving the transition from a hyperglycemic inflammatory microenvironment to a regenerative one. Here, we describe a polydopamine (PDA)-mediated ultralong silk microfiber (PDA-mSF) and metformin (Met)-loaded zeolitic imidazolate framework (ZIF) incorporated into a silk fibroin/gelatin (SG) patch to promote periodontal soft and hard tissue regeneration by regulating the immunomodulatory microenvironment. The PDA-mSF endows the patch with a reactive oxygen species (ROS)-scavenging ability and anti-inflammatory activity, reducing the inflammatory response by suppressing M1 macrophage polarization. Moreover, PDA improves periodontal ligament reconstruction via its cell affinity. Sustained release of Met from the Met-ZIF system confers the patch with antiaging and immunomodulatory abilities by activating M2 macrophage polarization to secrete osteogenesis-related cytokines, while release of Zn2+ also promotes bone regeneration. Consequently, the Met-ZIF system creates a favorable microenvironment for periodontal tissue regeneration. These features synergistically accelerate diabetic periodontal bone and ligament regeneration. Thus, our findings offer a potential therapeutic strategy for hard and soft tissue regeneration in diabetic periodontitis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call